Preparation of Microporous Polypropylene/Titanium Dioxide Composite Membranes with Enhanced Electrolyte Uptake Capability via Melt Extruding and Stretching

نویسندگان

  • Shan Wang
  • Abdellah Ajji
  • Shaoyun Guo
  • Chuanxi Xiong
  • Wei Min Huang
چکیده

In this work, a blending strategy based on compounding the hydrophilic titanium dioxide (TiO2) particles with the host polypropylene (PP) pellets, followed by the common membrane manufacture process of melt extruding/annealing/stretching, was used to improve the polarity and thus electrolyte uptake capability of the PP-based microporous membranes. The influence of the TiO2 particles on the crystallinity and crystalline orientation of the PP matrix was studied using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and infrared dichroic methods. The results showed that the TiO2 incorporation has little influence on the oriented lamellar structure of the PP-based composite films. Investigations of the deformation behavior indicated that both the lamellar separation and interfacial debonding occurred when the PP/TiO2 composite films were subjected to uniaxial tensile stress. The scanning electron microscopy (SEM) observations verified that two forms of micropores were generated in the stretched PP/TiO2 composite membranes. Compared to the virgin PP membrane, the PP/TiO2 composite membranes especially at high TiO2 loadings showed significant improvements in terms of water vapor permeability, polarity, and electrolyte uptake capability. The electrolyte uptake of the PP/TiO2 composite membrane with 40 wt % TiO2 was 104%, which had almost doubled compared with that of the virgin PP membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydophilic polypropylene microporous membrane for using in a membrane bioreactor system and optimization of preparation conditions by response surface methodology

In this study, the response surface methodology (RSM) based on the central composite design (CCD) was used to optimize the preparation condition of polypropylene-grafted maleic anhydride (PP-g-MA) microporous membrane by thermally-induced phase separation (TIPS) method. A mixture of dibutyl phthalate (DBP) and dioctyl phthalate (DOP) was used as diluent. The effect of polymer composition and qu...

متن کامل

A Facile Approach of Thin Film Coating Consisted of Hydrophobic Titanium Dioxide over Polypropylene Membrane for Membrane Distillation

In this work, the hydrophobic modification of TiO2 nanoparticles (HTiO2) was carried out by reacting with dodecylphosphonic acid (DDPA) and hexylamine solution. A facile approach of the self-assembly technique was used for the coating of hydrophobic HTiO2 layer over the microporous polypropylene (PP) membrane. The self-assembled layer was formed between the interface of trimesoyl chloride (TMC)...

متن کامل

Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery

In this research, inorganic material type and content influence on coating of commercially available polypropylene (PP) separator were studied for improving its performance and safety as lithium ion battery separator. Heat-resistant nanopowders of Al2O3, SiO2 and ZrO2 were coated using polyvinylidene fluoride (PVDF) binder. Coating effects on the separators morphology, wettability, high tempera...

متن کامل

Determination of Acetaminophen Via TiO2/MWCNT Modified Electrode

Electrochemical behaviour of acetaminophen at the multi wall carbon nanotubes/titanium dioxide (MWCNT/TiO2) composite film modified glassy carbon electrode (GCE) via solvent casting method was studied. It is shown that the MWCNT/TiO2/GCE exhibits remarkable improvement in analytical response as compared to other electrodes. Comparing the responses of the MWCNT/TiO2/GCE with that obtained at the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017